Как повысить КПД электродвигателя: выбираем решение
В современных электромеханических преобразователях обнаруживаются потери энергии в магнитном, электрическом и механическом режимах, в результате возникают проблемы с выделением тепла, увеличением шума и вибрации. Это связано с низкой эффективностью перемещения элементов, перемагничиванием магнитного поля сердечника якоря электродвигателя или скачком нагрузок. Но возможно ли уменьшить эти «утечки» и таким образом улучшить коэффициент полезного действия, и если да, как это сделать? Эту тему мы рассмотрим в данной публикации.
Повышение КПД асинхронных двигателей становится все более актуальной задачей в современной электротехнике. Согласно определению, электрические машины бывают синхронными и асинхронными. Синхронные машины характеризуются одинаковой частотой вращения ротора и магнитного поля. В то время как у асинхронных машин магнитное поле вращается с более высокой скоростью, чем ротор. Большинство (около 90%) двигателей в мире являются асинхронными, в связи с их простотой в изготовлении, надежностью, доступной ценой и низкими эксплуатационными затратами. Кроме того, КПД асинхронных двигателей значительно выше, чем у синхронных.
Однако у асинхронных двигателей также имеются некоторые недостатки. Высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой - все эти факторы приводят к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске, а также снижению КПД в периоды пониженной нагрузки. К тому же, точная регулировка скорости работы прибора также не является возможной.
Существуют различные подходы к повышению КПД асинхронных двигателей. Некоторые из них включают улучшение обмотки на статоре, использование систем управления частотой и высотой напряжения, а также измельчения материала магнитного ядра внутри машины. Кроме того, применение технологии вариации скорости постоянного тока с использованием системы бесконтактной передачи энергии является возможным способом повышения КПД асинхронных двигателей.
Таким образом, повышение КПД асинхронных двигателей - важная задача для современной электротехники. Существуют различные подходы к решению этой задачи, каждый из которых имеет свои преимущества и ограничения.
Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.
Цена
Контроллеры-оптимизаторы являются весьма эффективными приборами, позволяющими увеличить КПД оборудования. Кроме того, они оказываются более доступными по цене, если сравнивать их с преобразователями. Например, на отечественном рынке можно купить устройство мощностью 90 кВт за сумму около 90–140 тысяч рублей.
Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.
Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.
Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.
Как выбрать лучшее оборудование для повышения КПД
Если вы планируете повысить КПД двигателя своего оборудования, важно правильно выбрать устройство для этой задачи. Выбор будет зависеть от особенностей работы оборудования. Если необходимо изменять скорость привода, то единственно подходящим решением будет приобретение преобразователя частоты. Однако, если скорость вращения двигателя остается неизменной или не требует большой точности изменения, то лучшим решением будет использование контроллеров-оптимизаторов. Они имеют более доступную стоимость по сравнению с преобразователями частоты.
На заметку: как повысить КПД электродвигателя
Если вы занимаетесь эксплуатацией электроприводов, то знаете, что их эффективность напрямую зависит от ряда факторов: степени загрузки по отношению к номинальной, конструкции, модели, степени износа и отклонения напряжения в сети от номинального. Кроме того, КПД электродвигателя может заметно снизиться после перемотки.
Чтобы оптимизировать работу электропривода, необходимо обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту подаваемого тока. Для этого применяется специальное оборудование, позволяющее повысить КПД электродвигателя. Однако не всегда возможно или целесообразно реализовать все перечисленные меры.
Наиболее востребованные приборы, которые позволяют улучшить работу электродвигателя, – это частотные преобразователи и устройства плавного пуска. Первые изменяют скорость вращения двигателя путем изменения частоты питающего напряжения, а вторые ограничивают скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД электродвигателей с точки зрения их эффективности работы и экономической целесообразности.
Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.
Преобразователь частоты, который в профессиональной среде именуется "частотником", содержит микропроцессор управления, который отвечает за организацию работы электронных ключей, контроль за функционированием оборудования, его диагностику и защиту от повреждений. Кроме того, система состоит из нескольких схем, которые включены в режимы ключей и открывают тиристоры или транзисторы. Преобразователи частоты с тиристорами считаются более эффективными в сравнении с другими видами, так как они способны работать с высокими напряжениями и токами, а их КПД достигает 98%. Однако, при малой мощности, это преимущество практически незаметно.
Два класса приборов, отличающихся своей структурой и принципом работы:
- С непосредственной связью. В таких преобразователях присутствуют выпрямители. Эта система отвечает за отпирание тиристоров и подключение обмотки к сети, что ведет к образованию выходного напряжения со частотой 0-30 Гц и ограниченным диапазоном управления скоростью вращения привода. Такие устройства обычно не используются при оснащении мощного оборудования, регулирующего множество технологических параметров.
- С промежуточным звеном постоянного тока. В таких преобразователях происходит двойное преобразование энергии: входное напряжение выпрямляется, фильтруется и сглаживается, а затем, при помощи инвертора, преобразуется в напряжение с необходимой амплитудой и частотой. КПД оборудования может несколько снижаться из-за этого промежуточного звена, но подобные преобразователи частоты имеют широкое применение благодаря возможности получения на выходе напряжения с высокой частотой.
Наиболее популярными являются преобразователи второго типа, так как они позволяют плавно регулировать обороты двигателей.
Возможности, которые может предоставить частотный преобразователь, во многом зависят от соответствия его функциональных возможностей целям использования. Например, для оснащения электроприводов насосов и вентиляторов используются преобразователи с невысокой перегрузочной способностью и, зачастую, с U/f-управлением. При необходимости такие преобразователи могут повышать начальное значение выходного напряжения, с целью увеличения момента двигателя на низких частотах.
Устройства с векторным управлением являются более совершенными. Они регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Такие преобразователи устанавливаются на прокатные станы, конвейеры, подъемное, упаковочное оборудование и так далее.
В случае, если нужно выполнить контролируемое торможение двигателя, используется функция замедления, которую может обеспечить частотный преобразователь. Однако, если требуется интенсивное замедление, может потребоваться использование «частотника», оснащенного встроенными или внешними блоком торможения и тормозным резистором, или рекуперативным блоком торможения. При динамическом торможении двигатель переходит в генераторный режим и трансформирует механическую энергию в электрическую, которая возвращается в звено постоянного тока и либо рассеивается в виде тепла на сопротивлении тормозного резистора, либо возвращает энергию в сеть посредством рекуперации. Такой подход подходит для станкового и конвейерного оборудования.
Частотный преобразователь с обратной связью позволяет поддерживать постоянную скорость вращения при переменной нагрузке с более высокой точностью, чем преобразователь без обратной связи, что повышает качество технологического процесса в замкнутых системах. Подобные устройства широко используются в робототехнике, дерево- и металлообработке, в системах высокоточного позиционирования.
В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.
В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.
В данном случае мы имеем преобразователь частоты, который используется для асинхронного двигателя. Описав его рабочий принцип выше, можно утверждать, что данный прибор способен уменьшить затраты электроэнергии, обеспечить плавный запуск механизма, обеспечить точное регулирование скорости вращения при изменяющейся нагрузке и увеличить пусковой момент. Кроме того, все вышеперечисленное в сумме ведет к увеличению коэффициента полезного действия машины.
Несмотря на эти очевидные преимущества, следует отметить некоторые недостатки такого «частотника». В первую очередь, стоит заметить его достаточно высокую стоимость. Кроме того, в процессе эксплуатации преобразователь может создавать электромагнитные помехи.
Контроллеры-оптимизаторы: устройства для плавного пуска
Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.
Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.
Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.
Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы электродвигателя являются регуляторами напряжения питания, которые контролируют фазы тока и напряжения. Они гарантируют полное управление приводом на всех стадиях работы и предотвращают повышенное и пониженное напряжение, перегрузку, обрывы или нарушение чередования фаз. Путем изменения напряжения питания двигателя, контроллеры-оптимизаторы согласовывают значение механического момента, который развивает электродвигатель, с значением механического момента нагрузки на его валу. Последнее позволяет увеличить коэффициент мощности, а скорость вращения ротора электродвигателя остается неизменной.
Данное оборудование является самодостаточным и дополнительных устройств не требует. Кроме того, контроллер-оптимизатор обеспечивает прекращение отбора мощности во время динамической нагрузки, когда тиристоры закрыты и не проводят электрический ток. Управляющие импульсы открывают тиристоры при поступлении и закрывают переход тока через ноль. Отметим, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.
Фото: freepik.com